
Mechanics and Mechanical Engineering
Vol. 22, No. 1 (2018) 221–237
c⃝ Lodz University of Technology

An Axisymmetric Contact Problem of an Elastic Layer on a Rigid
Circular Base

B. Kebli
S. Berkane

F. Guerrache

Department of Mechanical Engineering
Ecole Nationale Polytechnique, Algiers, Algeria

belkacem.kebli@g.enp.edu.dz
sberkane@uwo.ca

fadila.guerrache@g.enp.edu.dz

Received (18 September 2017)
Revised (14 October 2017)

Accepted (18 November 2017)

An analytical solution is presented to a doubly mixed boundary value problem of an
elastic layer partially resting on a rigid smooth base. A circular rigid punch is applied
to the upper surface of the medium where the contact is supposed to be smooth. The
case of the layer with a cylindrical hole was considered by Toshiaki and all [5]. The
studied problem is reduced to a system of dual integral equations using the Boussinesq
stress functions and the Hankel integral transforms. With the help of the Gegenbauer
formula we get an infinite algebraic system of simultaneous equations for calculating the
unknown function of the problem. The truncation method is used for getting the system
coefficients. A closed form solution is given for the displacements, stresses and the stress
singularity factors. The stresses and displacements are then obtained as Bessel function
series. For the numerical application we give some conclusions on the effects of the radius
of the punch with the rigid base and the layer thickness on the displacements, stresses,
the load and the stress singularity factors are discussed.

Keywords: axisymmetric elastic deformation, contact problem, doubly mixed boundary
value, Hankel integral transforms, dual integral equations, infinite algebraic system.

1. Introduction

The contact mechanics is one bases of mechanical engineering and is essential for
the security and the reliability of projects design. It treats the calculations implying
elastic, viscoelastic or plastic mediums during static or dynamic contacts.

Lebedev and Ufliand [1] studied the problem of pressing a punch of circular
cross-section into an elastic layer. They expressed the required displacements and
stresses in terms of Neuber-Papkovich auxiliary functions. Which are determined
from of Fredholm integral equation with a continuous symmetrical kernel.
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The axisymmetric deformation of an elastic layer with a circular line of sepa-
ration of the boundary conditions on both faces was solved by Zakorko [2]. The
corresponding systems of dual integral equations were reduced to a Fredholm inte-
gral equations system of the second kind. In the work [3] an axisymmetric contact
problem for an elastic layer on a rigid foundation with a cylindrical hole has been
considered by Dhaliwal. The problem is reduced to the solution of two simultaneous
Fredholm integral equations.

A circular load applied on an elastic layer is developed by Wood [4]. An exact
solution was obtained by the Hankel transform method where the stresses and
displacements were given in closed form. Toshiaki et al [5] presented the solution of
an elastic layer resting on a rigid base with a cylindrical hole whose radius is different
from that of the rigid punch applied on the upper surface of the medium. The
problem is reduced to the solution of an infinite system of simultaneous equations by
assuming that both the contact stress under the punch and the normal displacement
in the region of the hole may be expressed as appropriate Bessel series.

Sakamoto [6] considered the axisymmetric problem on an elastic layer weakened
by a circular crack subjected to an internal uniform pressure. The study consid-
ers the two cases when the surfaces of the layer are free of charge and smoothly
clamped. These problems are reduced to dual integral equations which are solved
using an infinite system of algebraic equations by the Gegenbauer formula. The
work of Sakamoto and Koboyashi [7] an axisymmetric contact problem of an elastic
layer subjected to a tensile stress applied to a circular region is presented. Their
second paper [8] deals with the contact problem of rigid punch applied on an infi-
nite elastic layer resting on a rigid base with a circular hole. These mixed boundary
problems are effectively reduced to an exact solution of infinite systems of simulta-
neous equation.

In the present work, an analytical solution of an axisymmetric contact problem
of an elastic layer on a rigid circular base has been developed. We determine
the solution of the elastic problem by the help Hankel integral transform method
using the auxiliary Boussinesq stress functions. The doubly mixed boundary value
problem is reduced to a system of dual integral equations. The solution procedure
is analogous to the elastostatic case treated by Toshiaki [5] and Sakamoto [6]-[8].
The obtained solution is calculated from the coefficients of the infinite system of
simultaneous algebraic equations by means of the Gegenbauer expansion formula of
the Bessel function. Numerical results are obtained for examining the effects of the
radius of the punch with the rigid base and the layer thickness on the displacements,
stresses as well as the load and the stress singularity factors.

2. Formulation of the problem and its solution

We use a cylindrical coordinate system (r, θ, z). The Poisson ratio and the Young’s
modulus of the elastic medium are noted by ν and G, respectively. A general
solution of the axisymmetric equilibrium system without torsion can be represented
by Boussinesq’s harmonic stress functions φ0, φ3, where (ur, vθ, wz) denotes the
displacement vector and (σr, σθ, σz, τrz, τθz, τrθ) the stress tensor, as follows:

2Gur =
∂φ0

∂r
+ z

∂φ3

∂r
vθ = 0 (1)
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2Gwz =
∂φ0

∂z
+ z

∂φ3

∂z
− (3− 4v)φ3 (2)

σr =
∂2φ0

∂r2
+ z

∂2φ3

∂r2
− 2ν

∂φ3

∂z
(3)

σθ =
∂φ0

r∂r
+ z

∂φ3

r∂r
− 2ν

∂φ3

∂z
(4)

σz =
∂2φ0

∂z2
+ z

∂2φ3

∂z2
− 2 (1− ν)

∂φ3

∂z
(5)

τrz =
∂2φ0

∂r∂z
+ z

∂2φ3

∂r∂z
− (1− ν)

∂φ3

∂r
τrθ = τθz = 0 (6)

Figure 1 Geometry of the problem

We consider an isotropic elastic layer with thickness h, as shown in Fig. 1 which is
indented by a circular area of radius a by the punch with a plane base meanwhile.
The layer is resting on a rigid smooth circular base of radius b. If the magnitude
of the penetration δ is small by application of an axial force P. The doubly mixed
boundary value of the elastic layer can be described by the following equations on
the rigid base:

(σz)z=0 = 0 r > b (7)

(wz)z=0 = 0 0 ≤ r ≤ b (8)

on the upper surface:
(σz)z=h = 0 r > a (9)

(wz)z=h = −δ 0 ≤ r ≤ a (10)

and
(τrz)z=0 = (τrz)z=h = 0 r ≥ 0 (11)

All stress components vanish at infinity.
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To satisfy the boundary condition (7) we can put the stress function φ0 and φ3 in
the following forms:

φ0 =

∫ ∞

0

[A (λ) sinhλz +B (λ) coshλz] J0 (λr) dλ (12)

φ3 =

∫ ∞

0

[C (λ) sinhλz +D (λ) coshλz] J0 (λr) dλ (13)

where Jn is a Bessel function of the first kind in order n and A(λ), B(λ), C(λ)
and D(λ) are unknown functions of λ. Using equations (1) - (6) and (12), (13) the
boundary condition (11) allows us to derive the expression:

λA (λ) = (1− 2ν)D (λ) (14)

B (λ) = (1− 2ν − λh cothλh)C (λ)− λhD (λ) (15)

From equations (1) - (6) and (12), (15) we obtain the components of displacement
and stress:

2Gwz = −
∫ ∞

0

{[(2− 2ν + λh cothλh) sinhλz − λz coshλz]C (λ)

+ [(2 (1− ν) coshλz − (λz − λh) sinhλz)D (λ)]J0 (λr) dλ (16)

σr + σθ = −
∫ ∞

0

{[(1 + 2ν − λh cothλh) coshλz + λz sinhλz]C (λ)

+ [((1 + 2ν) sinhλz + (λz − λh) coshλz)D (λ)]λJ0 (λr) dλ (17)

σr − σθ = −
∫ ∞

0

{[(1− 2ν − λh cothλh) coshλz + λz sinhλz]C (λ)

+ [((1− 2ν) sinhλz + (λz − λh) coshλz)D (λ)]λJ2 (λr) dλ (18)

σz = −
∫ ∞

0

{[(1 + λh cothλh) coshλz − λz sinhλz]C (λ)

+ [sinhλz + (λz − λh) coshλz]D (λ)}λJ0 (λr) dλ (19)

τrz = −
∫ ∞

0

{[λz coshλz − λz cothλh sinhλz] C (λ)

+ (λz − λh) sinhλzD (λ)]}λJ1 (λr) dλ (20)

Using equations (16) - (20) the boundary conditions (10) to (7) lead to the
following system of dual integral equations:

(σz)z=0 = −
∫ ∞

0

[1 + λh cothλhC (λ) + λhD (λ)]λJ0 (λr) dλ = 0 r > b (21)

(wz)z=0 =
1− ν

G

∫ ∞

0

D (λ) J0 (λr) dλ = 0 r ≤ b (22)
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(σz)z=h = −
∫ ∞

0

[(
coshλh+

λh

sinhλh

)
C (λ)

+ sinhλhD (λ)]λJ0 (λr) dλ = 0 r > a (23)

(wz)z=h = −1− ν

G

∫ ∞

0

[sinhλhC (λ)

+ coshλhD (λ)]J0 (λr) dλ = −δ r ≤ b (24)

A large contribution is made for solving the similar integral equation problems [9].
For the present study we follow the method developed by Sakamoto [6] - [8]. In
order to satisfy the two last homogeneous equations of (21) - (24), we can set:

η

[(
coshλh+

λh

sinhλh

)
C (λ) + sinhλhD (λ)

]
=

∞∑
n=0

αnMn (λa) (25)

η [(1 + λh cothλh)C (λ) + λhD (λ)] =

∞∑
n=0

βnMn (λb) (26)

where:

η =
1− ν

δG
(27)

Mn (λx) = Jn+ 1
2
(λx/2)J−(n+ 1

2 )
(λx/2) (28)

Solving this system of two equations yields the determination of C(λ) and D(λ):

ηC (λ) = ∆−1 (λh)
∞∑

n=0

[
2λheλh

(
e2λh − 1

)
αnMn (λa)

−
(
e2λh − 1

)2
βnMn (λb)

]
(29)

ηD (λ) = ∆−1 (λh)
∞∑

n=0

[
−2eλh

(
(λh+ 1) e2λh + λh− 1

)
αnMn (λa)

+
(
e4λh + 4λhe2λh − 1

)
βnMn (λb)

]
(30)

where:
∆ (λh) = −e2λh

[
e2λh − 2

(
2 (λh)

2
+ 1
)]

− 1 (31)

Now if we substitute the expressions of C(λ) and D(λ), given in (16) - (20), into
the first two equations of (11), we get:

∞∑
n=0

∫ ∞

0

[αnf1 (λ)Mn (λa) + βnf2 (λ)Mn (λb)]J0 (λr) dλ = −1 0 ≤ r ≤ a (32)

∞∑
n=0

∫ ∞

0

[αnf2 (λ)Mn (λa) + βnf2 (λ)Mn (λb)]J0 (λr) dλ = 0 0 ≤ r ≤ b (33)

where: {
f1 (λ) = ∆−1 (λh)

(
e4λh + 4λhe2λh − 1

)
f2 (λ) = ∆−1 (λh)

[
−2eλh

(
(1 + λh) e2λh + (λh− 1)

)] (34)
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Equations (32), (33) are independent of r in their respective intervals. Setting:

Xm (λx) = J2
m

(
λx

2

)
(35)

And making use the following Gegenbauer’s formula:

J0 (λx) =
∞∑

m=0

(2− δ0m)Xm (λx) cosmϕ

r = x sin (ϕ/2) (0 ≤ r ≤ x x = a, b) (36)

where δ0m denotes the Kronecker delta, δnm =

{
1, m = n
0, m ̸= n

We obtain the following infinite system of simultaneous equations for the determi-
nation of αn and βn:

[αnf1 (λ)Mn (λa) + βnf2 (λ)Mn (λb)]Xm (λa) dλ = −δ0m (37)

[αnf2 (λ)Mn (λa) + βnf2 (λ)Mn (λb)]Xm (λb) dλ = 0 (38)

2.1. Displacements and stresses on two layer boundaries

The components of displacement on both the upper and lower surfaces of the layer
can be expressed as follows:

(wz)z=0

δ
= −H (r − b)

∞∑
n=0

∫ ∞

0

[αnf2 (λ)Mn (λa)

+βnf1 (λ)Mn (λb)]J0 (λr) dλ (39)

On the upper surface z=h, the components of the displacement can be calculated:

(wz)z=h

δ
= −H (r − a) +H (r − a)

∞∑
n=0

∫ ∞

0

[αnf1 (λ)Mn (λa)

+βnf2 (λ)Mn (λb)]J0 (λr) dλ (40)

Using the integral formula for the Bessel functions: 6. 522 (11) [10]. Making use of
the following integral formula:∫ ∞

0

λMn (λx)J0 (λr) dλ =

{
2
πr

T2n+1(r/x)√
x2−r2

r < x

0 r > x
(41)

where T2n+1 is the Tchebycheff function of the first kind.
The normal stress on the upper surface z = 0 for r > a can be expressed appropriate
Chebyshev series as follows as:

η (σz)z=0 = − 2

π
H (b− 1)

∞∑
n=0

βn
T2n+1 (r/b)

r
√
b2 − r2

(42)
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whereas on z = h we obtain:

η (σz)z=h = − 2

π
H (a− r)

∞∑
n=0

αn
T2n+1 (r/a)

r
√
a2 − r2

(43)

The total load P to indent the punch to the magnitude δ is given by

P = −2π

∫ a

0

(σz)z=h rdr =
4

η

∞∑
n=0

(−1)
n

2n+ 1
αn (44)

The stress singularity factors corresponding to the studied problem are defined by:

S0 = lim
r→b−

√
2π (r − b) (σz)z=0 (45)

Sh = lim
r→a−

√
2π (r − a) (σz)z=h (46)

Substituting equations (42) and (43) into equations (45), (46). We obtain the simple
expression for the stress singularity factors as following:

S0 =
2

b
√
π

∞∑
n=0

βn (47)

Sh =
2

a
√
π

∞∑
n=0

αn (48)

As a particular case, we can find that for b = 0 andh → ∞, equation (19) leads to

∞∑
n=0

αn

∫ ∞

0

Mn (λa)Xm (λa) dλ = δ0m (49)

From equation (49) we can get α0 = a, αn = 0, (n ≥ 1)

3. Numerical results and discussions

To determine the unknown coefficients αn and βndiscussed in previous section, we
must evaluate the infinite integrals of the system equations (37) - (38). By separat-
ing into the terms obtained by numerical integration and those by an application of
the asymptotic expansions of Bessel functions. From the expressions of f1 (λ) and
f2(λ) give in (34). It is clear that for large values of λ we get enough f1 (λ) → −1
and f2 (λ) → 0. This allows us to write:∫ ∞

0

f1 (λ)Mn (λx)Xm (λx) dλ =

∫ λ0

0

f1 (λ)Mn (λx)Xm (λx) dλ

−
∫ ∞

λ0

Mn (λx)Xm (λx) dλ (50)
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0

f2 (λ)Mn (λx)Xm (λx) dλ =

∫ λ0

0

f2 (λ)Mn (λx)Xm (λx) dλ

x, y = a, b (51)

The first integrals of the night land side of the above expressions are evaluated
numerically using the Simpson formula whereas the second one is replaced by the
integral of the function equivalent.
Next we evaluate asymptotically the integral term

∫∞
λ0

Mn (λx)X (λx) dλ. As for
large value of λ we have:

Jν (λx) ≈
√

2

πλx

[
cos
(
λx− π

2
ν − π

4

)
− 4ν2 − 1

8λx
sin
(
λx− π

2
ν − π

4

)

+0

(
1

(λx)
2

)]
λx → +∞ (52)

J(n+ 1
2 )

(
λx

2

)
J−(n+ 1

2 )

(
λx

2

)
≈ 4

(
1

2
+ n

)2
cos (λx)

π (λx)
2 (53)

whereas:

Mn (λx) ≈ −8 (1 + n)

π (λx)
2 cos (λx) (54)

Then Mn (λx)Xm (λx) is replaced by:

4

π2 (λx)
2

[
sin (λx) +

(−1)
m

2
(1− cos (2λx))

]
(55)

for large values of λ and the integral:∫ ∞

t0

cos2 (λx0)

(λx0)
2 dt by

cos2 λx0

λx0
+ si (2λx0) (56)

Then: ∫ ∞

λ0

Mn (λx)Xn (λx) dλ ≈ 4

π2 (x)
2

{
sin (λ0x)

λ0
− xci (λ0x)

+
(−1)

m

2

[
1− cos (2λ0x)

λ0
− 2xsi (2λ0x)

]}
(57)

where si(x) is the integral sine function:

si (x) = −
∫ ∞

x

sin ξ

ξ
dξ (58)

and ci(x) is the integral cosine function:

ci (x) = −
∫ ∞

x

cos ξ

ξ
dξ (59)
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Table 1 Values of the coefficients αn and βn for h/a = 1.5 and various values of b/a

n b/a = 0.5 b/a = 1 b/a = 1.5
αn

0
1
2
3
4
5
6
7
8
9

0.559686534802502
-0.185395060778207
0.029552956378661
-0.003018696960819
0.000208910491890
-0.000006932641063
-0.000002042929074
-0.000002352058641
-0.000004683009179
-0.000003098017624

1.281311717811767
-0.203638231658882
0.014286773708200
0.000239948419853
-0.000105729434747
0.000004387723409
-0.000003152691474
-0.000006872410117
-0.000012603386507
-0.000008388267814

1.644374747440548
-0.102050296340474
0.003647691155375
0.000094166506271
-0.000001512460679
-0.000002837293623
-0.000004723300180
-0.000009595974541
-0.000017762314415
-0.000011826332774

βn

0
1
2
3
4
5
6
7
8
9

0.619456189051369
-0.011314548473684
0.000182590062900
0.000000754790856
-0.000002379929250
-0.000006330790601
-0.000014372442618
-0.000029369934242
-0.000054618999189
-0.000036425537745

1.277824098584786
-0.207500728123057
0.014236787062389
0.000252829347999
-0.000106730796414
0.000004417291304
-0.000003127411009
-0.000006828792265
-0.000012521155141
-0.000008333309575

1.381502620649796
-0.813951036152699
0.138492107445660
-0.004749530147052
-0.002723247263488
0.000618631151190
-0.000046861951699
-0.000007854765221
-0.000000079816219
-0.000001852011178

Figure 2 The variation of the distribution ofσ∗
z for h/b = 1.5 and b/a = 1.5 with various values

of z/a
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Table 2 Values of the coefficients αn and βn for b/a = 1.5 and various values of h/a

n h/a = 0.7 h/a = 1 h/a = 1.5
αn

0
1
2
3
4
5
6
7
8
9

2.659907562693490
-0.465369868613824
0.038559658922877
0.002026576675632
-0.000315036921171
0.000002557413666
-0.000006181312092
-0.000014169878542
-0.000025796885320
-0.000017166183937

2.102315861316422
-0.216242333748549
0.016086130678807
-0.000132119321970
-0.000019167988751
-0.000001442108547
-0.000006000199801
-0.000011832796019
-0.000021886145107
-0.000014570262368

1.644374747440548
-0.102050296340474
0.003647691155375
0.000094166506271
-0.000001512460679
-0.000002837293623
-0.000004723300180
-0.000009595974541
-0.000017762314415
-0.000011826332774

βn

0
1
2
3
4
5
6
7
8
9

1.854716535735087
-2.681194107187618
0.557344928416927
0.182944146592442
-0.107398009461012
-0.002997896836750
0.0024612211552625
-0.002089912667773
-0.001178413993801
0.000559177760934

1.575388298969770
-1.647132725784705
0.315793975338493
0.035197211736266
-0.028323713330607
0.003707279724757
0.001043983655695
-0.000466865123625
0.000035591438942
0.000026707047819

1.381502620649796
-0.813951036152699
0.138492107445660
-0.004749530147052
-0.002723247263488
0.000618631151190
-0.000046861951699
-0.000007854765221
-0.000000079816219
-0.000001852011178

Figure 3 The variation of the distribution of w∗
z for h/b = 1.5 and b/a = 1.5 with various values

of z/a
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In this study the value λ0 = 1500 was used. The coefficients elastics αn and βn are
shown in the following Tabs. 1–2 of the thickness elastic layer and the radius of the
punch with the rigid base.
The distribution of the stresses and the displacements with different values of plan
z/a is graphically illustrated in the Figs. 2–3.
Figures 4–5 show the variation of the nondimensional normal stress (σ∗

z)z=0 for h/a
and b/a, respectively. The distribution gets its maximum values at the centre of
the rigid base. The stress has an infinite value if r/a = b/a. It decreases with
decreasing the layer thickness and the radius of the rigid base.

Figure 4 The variation of (σ∗
z )z=0 for b/a = 1.5 and various values of h/a

Figure 5 The variation of (σ∗
z )z=0 for h/a = 1.5 and various values of b/a

The distribution of the nondimensional axial displacement at the edge of the rigid
base is given in Fig. 6 with various values of h/a. It is noted that the value are
decreasing with increasing the layer thickness and the rigid base radius. Graphically
they are illustrated in Fig. 7.
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Figure 6 The variation of (w∗
z)z=0 for b/a = 1.5 and various values of h/a

Figure 7 The variation of (w∗
z)z=0 for h/a = 1.5 with and various values of b/a

The normal stress at the upper surface can be seen from Figures 8-9. It is shown
for various values for h/a and b/a, respectively. The distribution gets its maximum
values with the centre of the punch. It decreases with decreasing the thickness of
the elastic layer and increasing the radius of the rigid base.

Figure 8 The variation of (σ∗
z )z=h for b/a = 1 and various values of h/a
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Figure 9 The variation of (σ∗
z )z=h for h/a = 1.5 and various values of b/a

Figure 10 The variation of (w∗
z)z=h for b/a = 1 and various values of h/a

Figure 11 The variation of (w∗
z)z=h for h/a = 1.5 and various values of b/a
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The distribution of the displacement for the upper surface is shown from Figures
10-11 with h/a, b/a. It increases with increasing the layer thickness and decreasing
the rigid base radius.
The variations of the total load P ∗ = ηP

4 applied to the punch with the layer
thickness and rigid base are mentioned in Figures 12–13. It is noted that the value
of P∗ increases with decreasing the layer thickness and increasing the rigid base
radius.

Figure 12 The variation of P ∗ = ηP
4
for b/a = 0.75 and various values of h/a

Figure 13 The variation of P∗ for h/a = 1.5 and various values of b/a

The variation of the stress singularity factors corresponding to the problem is graph-
ically illustrated in Figures 14-17. The stress singularity factors S0 and Sh, give
a large value with decreasing the layer thickness. It is noted that the value S0
increases with the rigid base radius, the opposite behaviour is obtained for the
case Sh.



An Axisymmetric Contact Problem of an Elastic Layer on a Rigid ... 235

Figure 14 The variation of S0 for h/a = 1.5 and various values of b/a

Figure 15 The variation of S0 for b/a = 0.75 and various values of h/a

Figure 16 The variation of Sh for b/a = 0.75 and various values of h/a
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Figure 17 The variation of Sh for h/a = 1.5 and various values of b/a

4. Conclusion

In the present paper, we studied a doubly mixed boundary value problem for an
elastic layer. An analytical solution was obtained for the corresponding dual integral
equations system through an infinite system of simultaneous equations using the
Gegenbauer formula.

The obtained results are summarized as follows:

1. Analytical solution based upon the integral Hankel transforms for contact
problem have been developed and utilized.

2. By the truncation method. An infinite algebraic system has been solved with
different values of the elastic layer thickness and the rigid base radius.

3. The numerical results revealed the effects of the layer thickness and the radius
of the punch with the rigid base on the displacement, the normal stress, as
well as on the load and the stress singularity factors.

The graphs obtained are analyzed as follows:

1. The distribution of the stresses and displacements with different values of plan
z/b is graphically illustrated.

2. The nondimensional normal stress σ∗
z for h/a and b/a gets its maximum values

at the centre of the rigid base. The stress has an infinite value r/a = b/a. It
decreases with decreasing layer thickness and the radius of the rigid base.

3. It is noted that, the distribution of the nondimensional displacement at the
edge of the rigid base with various values of h/a decreases with decreasing the
layer thickness and increasing the rigid base radius.

4. The normal stress at the upper surface for various values for h/a and a/b,
respectively. The distribution gets its maximum values with the centre of
the punch. It decreases with decreasing of the elastic layer thickness and
increasing the rigid base radius.
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5. An opposite behaviour is remarked for the distribution of the displacement at
the edge of the punch.

6. The variations of the total load P∗ applied to the punch with the layer thick-
ness and rigid base as also mentioned. It is noted that the value increases
with decreasing the layer thickness and increasing rigid base radius.

7. The variation of the stress singularity factors corresponding to the studied
problem is graphically illustrated. The stress singularity factors S0 and Sh,
give a large value with decreasing layer thickness. It is noted that the value
S0 increases with the rigid base radius, the opposite behaviour is obtained for
the case Sh.

8. The graphical results illustrated the effects of the layer thickness and the
punch radius with the rigid base on the applied load and the stress singularity
factors.
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